师资力量

教授

胡辉


个人简介:

胡辉,男,

研究方向:

非线性振动

学术成果:

主持湖南省自然科学基金项目1项,2009年获湖南省自然科学三等奖1项,在ASME Journal of Applied Mechanics、Journal of Sound and Vibration、Physics Letters A 、Acta Mechanica 、Archive of Applied Mechanics等国外刊物发表第1作者论文24篇。

科技奖励:

[1]湖南省自然科学三等奖,机械系统中非线性动力学定量分析方法与应用

发表的主要论文:

[1]H. Hu, Y.J. Guo, and D. Q. Xu, Relationship between the elastic-plastic interface radius and internal pressure of thick-walled cylinders using the Lambert W function. Archive of Applied Mechanics, 2013, 83 (4): 643-646.

[2]H. Hu, Y. P. Zhao, Y.J. Guo, and M. Y. Zheng, Analysis of linear resisted projectile motion using the Lambert W function. Acta Mechanica, 2012, 223(2): 441-447.

[3]H.Hu, M. Y. Zheng,  A note on the two-variable expansion method. Acta Mechanica, 2011, 216(1-4): 351-357.

[4]H.Hu, M. Y. Zheng, Y. J. Guo. Iteration calculations of periodic solutions to nonlinear jerk equations. Acta Mechanica, 2010, 209(3-4): 269-274.

[5]H. Hu, Perturbation method for periodic solutions of nonlinear jerk equations, Physics Letters A , 2008, 372 (23) : 4205-4209.

[6]H. Hu. Solution of a mixed parity nonlinear oscillator: Harmonic balance. Journal of Sound and Vibration 2007, 299 (1-2): 331-338.

[7]H. Hu, J.H. Tang.. A classical iteration procedure valid for certain strongly nonlinear oscillators. Journal of Sound and Vibration 2007, 299 (1-2): 397-402.

[8]H. Hu. Solutions of a quadratic nonlinear oscillator: iteration procedure. Journal of Sound and Vibration 2006, 298 (4-5): 1159-1165.

[9]H. Hu. Solutions of the Duffing-harmonic oscillator by an iteration procedure. Journal of Sound and Vibration 2006, 298 (1-2): 446-452.

[10]H. Hu. Exact solution of a quadratic nonlinear oscillator. Journal of Sound and Vibration 2006, 295 (1-2): 450-457.

[11]H. Hu. Solutions of nonlinear oscillators with fractional powers by an iteration procedure. Journal of Sound and Vibration 2006, 294 (3): 608-614.

[12]H. Hu. Solution of a Duffingharmonic oscillator by the method of harmonic balance. Journal of Sound and Vibration 2006, 294 (3): 637-639.

[13]H. Hu. Solution of a quadratic nonlinear oscillator by the method of harmonic balance. Journal of Sound and Vibration 2006, 293 (1-2): 462-468.

[14]H. Hu. A note on the frequency of nonlinear conservative oscillators. Journal of Sound and Vibration 2005, 286 (3): 653-662.

[15]H. Hu, J.H. Tang. A convolution integral method for certain strongly nonlinear. Journal of Sound and Vibration,2005, 285 (4-5): 1235-1241.

[16]H. HuZ.G. Xiong. Comparison of two Lindstedt-Poincaré type Perturbation methods. Journal of Sound and Vibration,2004, 278 (1-2): 437-444.

[17]H. Hu. A modified method of equivalent linearization that works even when the nonlinearity is not small. Journal of Sound and Vibration2004, 276 (3-5): 1145-1149.

[18]H. Hu. A classical perturbation technique that works even when the linear part of restoring force is zero. Journal of Sound and Vibration,2004, 271 (3-5): 1175-1179.

[19]H. Hu. A classical perturbation technique which is valid for large parameters. Journal of Sound and Vibration, 2004, 269 (1-2): 409-412

[20]H. Hu, Z.G. Xiong. Oscillations in an potential. Journal of Sound and Vibration, 2003, 259 (4): 977-980.

[21]H. Hu. On the Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials. ASME Journal of Applied Mechanics, 2003,70(2):309-310.

[22]H. Hu. More on generalized harmonic oscillators. Journal of Sound and Vibration, 2002, 250 (3): 567-568.

[23]Hui Hu. More on one-dimensional collisions. The Physics Teacher, 2002, 40(7):72.

[24]Hui Hu, Jinyun Yu. Another look at projectile motion. The Physics Teacher, 2000, 38(7):423.

主持的科研项目:

[1]湖南省自然科学基金,